Welcome Guest [Log In] [Register]
Welcome to Politics R Us. We hope you enjoy your visit.


You're currently viewing our forum as a guest. This means you are restricted from some sections. Register now to have full access. Email verification is required.


REGISTER NOW!




If you're already a member please log in to your account to access all of our features. If you are having difficulties, send an email to "beddows1@telus.net"

Username:   Password:
Add Reply
The Texas Revolution
Topic Started: Apr 8 2017, 07:29 PM (58 Views)
Brewster
Member Avatar

University of Texas
Austin
Lithium-Ion Battery Inventor Introduces New Technology for Fast-Charging, Noncombustible Batteries

AUSTIN, Texas — A team of engineers led by 94-year-old John Goodenough, professor in the Cockrell School of Engineering at The University of Texas at Austin and co-inventor of the lithium-ion battery, has developed the first all-solid-state battery cells that could lead to safer, faster-charging, longer-lasting rechargeable batteries for handheld mobile devices, electric cars and stationary energy storage.

Goodenough’s latest breakthrough, completed with Cockrell School senior research fellow Maria Helena Braga, is a low-cost all-solid-state battery that is noncombustible and has a long cycle life (battery life) with a high volumetric energy density and fast rates of charge and discharge. The engineers describe their new technology in a recent paper published in the journal Energy & Environmental Science.

“Cost, safety, energy density, rates of charge and discharge and cycle life are critical for battery-driven cars to be more widely adopted. We believe our discovery solves many of the problems that are inherent in today’s batteries,” Goodenough said.

The researchers demonstrated that their new battery cells have at least three times as much energy density as today’s lithium-ion batteries. A battery cell’s energy density gives an electric vehicle its driving range, so a higher energy density means that a car can drive more miles between charges. The UT Austin battery formulation also allows for a greater number of charging and discharging cycles, which equates to longer-lasting batteries, as well as a faster rate of recharge (minutes rather than hours).

Today’s lithium-ion batteries use liquid electrolytes to transport the lithium ions between the anode (the negative side of the battery) and the cathode (the positive side of the battery). If a battery cell is charged too quickly, it can cause dendrites or “metal whiskers” to form and cross through the liquid electrolytes, causing a short circuit that can lead to explosions and fires. Instead of liquid electrolytes, the researchers rely on glass electrolytes that enable the use of an alkali-metal anode without the formation of dendrites.

The use of an alkali-metal anode (lithium, sodium or potassium) — which isn’t possible with conventional batteries — increases the energy density of a cathode and delivers a long cycle life. In experiments, the researchers’ cells have demonstrated more than 1,200 cycles with low cell resistance.

Additionally, because the solid-glass electrolytes can operate, or have high conductivity, at -20 degrees Celsius, this type of battery in a car could perform well in subzero degree weather. This is the first all-solid-state battery cell that can operate under 60 degree Celsius.

Braga began developing solid-glass electrolytes with colleagues while she was at the University of Porto in Portugal. About two years ago, she began collaborating with Goodenough and researcher Andrew J. Murchison at UT Austin. Braga said that Goodenough brought an understanding of the composition and properties of the solid-glass electrolytes that resulted in a new version of the electrolytes that is now patented through the UT Austin Office of Technology Commercialization.

The engineers’ glass electrolytes allow them to plate and strip alkali metals on both the cathode and the anode side without dendrites, which simplifies battery cell fabrication.

Another advantage is that the battery cells can be made from earth-friendly materials.

The glass electrolytes allow for the substitution of low-cost sodium for lithium. Sodium is extracted from seawater that is widely available,” Braga said.

Goodenough and Braga are continuing to advance their battery-related research and are working on several patents. In the short term, they hope to work with battery makers to develop and test their new materials in electric vehicles and energy storage devices.

This research is supported by UT Austin, but there are no grants associated with this work. The UT Austin Office of Technology Commercialization is actively negotiating license agreements with multiple companies engaged in a variety of battery-related industry segments.
Link

Bigger, Faster, Cheaper than Li-ion - a Chevy Bolt or Tesla equipped with the same size batteries as at present could travel 600-900 miles on a charge, and fully recharge during a coffee break.

In Solar and Wind applications, the batteries could fill in any blanks in power generation - no need for Fossil Fuel plants for Backup,

And the batteries will be cheaper than anything now in production - coupled with modern Wind and Solar applications, which are already the cheapest source of Power Generation in the world, the days of energy shortage anywhere in the world will be considered a quaint period in history.

Assuming the new batteries live up to the hype, the only question left will be;

"Will American and Canadian entrepreneurs get behind this?
Or will Trump let the Chinese run away with the technology and the jobs like they're doing with Wind and Solar?"
Edited by Brewster, Apr 8 2017, 07:29 PM.
Offline Profile Quote Post Goto Top
 
Telcoman
Member Avatar
Administrator
coal is the future, trump says so
Offline Profile Quote Post Goto Top
 
1 user reading this topic (1 Guest and 0 Anonymous)
DealsFor.me - The best sales, coupons, and discounts for you
« Previous Topic · Science & Religion · Next Topic »
Add Reply